SUMMER VACATION HOLIDAY HOME-WORK

CLASS: XII

SUBJECT: APPLIED MATHEMATICS

1. Construct a 2×3 matrix $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]$ whose element b_{ij} is given by $|2 i-3 j|$.
2. Write the number of all possible matrices of order 2×3 with each entry 5,7 or 8 .
3. Given $3\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$, find the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w .
4. Find a matrix A such that $2 A-3 B+5 C=0$, where $B=\left[\begin{array}{lll}5 & 3 & 1 \\ 2 & 0 & 4\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 3 & 2 \\ 0 & -5 & -1\end{array}\right]$.
5. If $\mathrm{A}=[1,-2,5], \mathrm{B}=[3,0,-4]$ and $\mathrm{C}=[-2,7,0]$, then find $2 \mathrm{~A}+\mathrm{B}-2 \mathrm{C}$.
6. Find $\mathrm{x}+\mathrm{y}+\mathrm{z}$, if $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$.
7. If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then find the value of $A^{2}-4 A-5 I$.
8. Write the following as a single matrix: $\left[\begin{array}{ccc}3 & 2 & 5 \\ 7 & -4 & 0\end{array}\right]\left[\begin{array}{cc}2 & 2 \\ 2 & -1 \\ 3 & 5\end{array}\right]-\left[\begin{array}{cc}7 & -8 \\ 5 & 9\end{array}\right]$.
9. If $\mathrm{A}=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}-2 & -1 & -4\end{array}\right]$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
10. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & x \\ -2 & 2 & -1\end{array}\right]$ is a matrix satisfying $A A^{\prime}=9 I_{3}$, find x .
11. Using the properties of determinants, prove that
(i) $\left|\begin{array}{ccc}5 a & -2 a+b & -2 c+a \\ -2 b+a & 5 b & -2 b+c \\ -2 c+a & -2 c+b & 5 c\end{array}\right|=12(a+b+c)(a b+b c+c a)$.
(ii) $\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c$
12. Using properties of determinants, solve the following equations for x .
(i) $\left|\begin{array}{lll}x+2 & x+6 & x-1 \\ x+6 & x-1 & x+2 \\ x-1 & x+2 & x+6\end{array}\right|=0$.
(ii) $\left|\begin{array}{lll}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|=0$.
13. Solve the following system of linear equations by Cramer's rule:
$6 x+y-3 z-5=0$
(i) $x+3 y-2 z=5$
$2 x+4 z-8=-7$
(ii)
$\frac{2}{x}+\frac{3}{y}=2$
$\frac{5}{x}+\frac{8}{y}=\frac{31}{6}$
14. It is $7: 00 \mathrm{pm}$ currently. What time (in am or pm)will be in next 1505 hours?
15. Find the last digit of 17^{17}.
16. Three varieties A, B and C of rice are mixed together in the ratio $4: 1: 1$ respectively. The cost price of rice B is ₹ 82 per kg and that of rice C is ₹ 90 per kg . If the price of the mixture is ₹ 94 per kg , then find the price per kg of rice A .
17. How many kg of sugar costing ₹ 45 per kg must be mixed with 30 kg sugar costing $₹ 35$ per kg so that there may be a gain of 12% by selling the mixture at ₹ 47.04 per kg .
18. A boat takes 90 minutes less to travel 36 km downstream than to travel the same distance upstream. If the speed of the boat in still water is $10 \mathrm{~km} / \mathrm{hr}$, find the speed of the stream.
19. A boat covers 4 km against the stream in 1 hour and cover the same distance in the direction of stream in 40 minutes. How long will it take to go 10 km in still water?
20. Two pipes A and B can fill in 30 minutes and 45 minutes respectively. Both pipes A and B are opened together for some time and then pipe B is turned off. If the tank is filled in 20 minutes, then find after how many minutes the pipe B is turned off?
21. Three pipes A, B and C can fill a tank in 72 minutes. If all the three pipes remain opened for 36 minutes and then pipe C is closed, it took 1 hour more to fill the tank by pipes A and B. Find the time required to fill the tank by pipe C alone.
22. In a 200 m race, A can give a start of 31 m to B and a start of 28 m to C. In a race of 350 m , how much start can B give to C ?
23. A can run 1 km in 4 minutes 54 seconds and B in 5 minutes. How many metres start can A give B in a km race so that the race may end in dead heat?
24. The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is atleast 61 cm , find the minimum length of the shortest side.
25. Solve the following inequality: $2 y-3<y+2 \leq 3 y+5$.
